博客
关于我
【Lintcode】266. Expect Distance
阅读量:214 次
发布时间:2019-02-28

本文共 955 字,大约阅读时间需要 3 分钟。

题目地址:

有个人困在了一个山洞 A A A,从山洞 A A A出发有两条路,一条路走 x x x千米,会回到山洞 A A A,另一条路走 2 2 2千米,会到山洞 B B B;从山洞 B B B出发也有两条路,一条路走 y y y千米,会到山洞 A A A,另一条路走 z z z千米会到山洞的出口 C C C。问他走出山洞的期望路程。他在山洞选择哪条路走的概率都是 1 2 \frac{1}{2} 21

X X X是从 A A A走到出口的距离, Y Y Y是从 B B B走到出口的距离,由条件期望公式得: E [ X ] = 1 2 ( x + E [ X ] ) + 1 2 ( 2 + E [ Y ] ) E [ Y ] = 1 2 ( y + E [ X ] ) + 1 2 z E[X]=\frac{1}{2}(x+E[X])+\frac{1}{2}(2+E[Y])\\E[Y]=\frac{1}{2}(y+E[X])+\frac{1}{2}z E[X]=21(x+E[X])+21(2+E[Y])E[Y]=21(y+E[X])+21z计算得: E [ X ] = 2 x + y + z + 4 E[X]=2x+y+z+4 E[X]=2x+y+z+4代码如下:

public class Solution {       /**     * @param x: the distance from cave A to cave A.     * @param y: the distance from cave B to cave B.     * @param z: the distance from cave B to exit C.     * @return: return the expect distance to go out of the cave.     */    public int expectDistance(int x, int y, int z) {           // write your code here.        return 2 * x + y + z + 4;    }}

时空复杂度 O ( 1 ) O(1) O(1)

转载地址:http://txcs.baihongyu.com/

你可能感兴趣的文章
MySQL的insert-on-duplicate语句详解
查看>>
mysql的logrotate脚本
查看>>
MySQL的my.cnf文件(解决5.7.18下没有my-default.cnf)
查看>>
MySQL的on duplicate key update 的使用
查看>>
MySQL的Replace用法详解
查看>>
mysql的root用户无法建库的问题
查看>>
mysql的sql_mode参数
查看>>
MySQL的sql_mode模式说明及设置
查看>>
mysql的sql执行计划详解
查看>>
mysql的sql语句基本练习
查看>>
Mysql的timestamp(时间戳)详解以及2038问题的解决方案
查看>>
mysql的util类怎么写_自己写的mysql类
查看>>
MySQL的xml中对大于,小于,等于的处理转换
查看>>
mysql的下载安装
查看>>
Mysql的两种存储引擎详细分析及区别(全)
查看>>
mysql的临时表简介
查看>>
MySQL的主从复制云栖社区_mysql 主从复制配置
查看>>
MySQL的事务隔离级别实战
查看>>
mysql的优化策略有哪些
查看>>
MySQL的使用
查看>>